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Deep Learning: Why?

First, it was machine vision…

Human

Deep 
Learning 
appears 
(green dots)

Growing Use of Deep Learning at Google [J. Dean]

Now it’s everywhere!
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Deep neural networks (DNNs)

Input Result

Application components:

Task objective
e.g. Identify face  

Training data
10-100M images

Network architecture
~10 layers
1B parameters  

Learning algorithm
~30 Exaflops
~30 GPU days

Raw data Low-levelfeatures Mid-level features High-levelfeatures
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Layer-by-layer computation

Key operation  is dense M x V

Training by recursive backpropagation of error on fitness function
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GPUs are Great for Vanilla CNNs
Why?

Because they are good at matrix multiply  90% 
utilization is achievable (on lots of “cores”)

Pascal GP100
3840 “cores”

3840 MAC/cycle
@ 1.4GHz

5.3 TMACS (FP)
@300W

28pJ/OP*

*Volta with tensor engine 
claims 4x better E
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HW for deep Networks: Frenzy

Datacenter  High-performance embedded Mobile

Mostly inference 
acceleration
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Information Processing in the IoT

[Freescale]
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Algorithmic Opportunities



Luca Benini 9 of 40

DNNs Are Evolving Rapidly

20152013 2016

AlexNet  
(~80% Top5)  

8 layers  
Params: 60M  

Model: 240MB

2012Before  
2000

ResNet  
(~94% top5)  
152 layers  
Params: 60M  
Model: 240MB

VGG
(~89% top5)

19 layers
LeNet5  
5 layers

Params: 1M

Reduce bitwidth

Deeper
More params?
Larger model? Model: 4MB

BinaryConnect  
[NIPS’15]

Many efforts to improve efficiency

XNORNet

SqueezeNet

SqueezeNet + DeepCompression:
6-bit, 20-50% sparse

AlexNet accuracy, ~500x smaller (0.5MB)

XNORnet (1-bit)  ~ 2 % AlexNet

1 3
3 1

O
I W O 3      2

~3.5
years

Sparse weights
Sparse activations
Compression

All applicable for inference  
Some for training

Batching

GoogLeNet  
(~89% top5)  

22 layers
Params: 140M Params: 6M 
Model: 500MB  Model: 24MB

2014

TernaryNet (2-bit, 5 0 % sparse)  ~ 1 % ResNet

~1
year

[Intel FPGAS 2017]

=

W

x
I

…

…

DeepComp
[ICLR’16]

2

3
0

Compact network Shared  
weights

1
3

HashedNets
[ICML’15]

Spatially  
SparseCNN  
[CIFAR-10
winner ‘14]

SparseCNN
[CVPR’15]
Pruning  
[NIPS’15]

TernaryConnect
[ICLR‘16]

Orders of magnitude compute effort an memory reduction with no loss in accuracy
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Toward Micropower CNN HW
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Outline

 Near Threshold Multiprocessing
 Non-Von Neumann Accelerators
 Aggressive Approximation
 From Frame-based to Event-based Processing
 Outlook and Conclusion
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. . . . .

4-stage OpenRISC &
RISC-V RV32IMC 

I$B0 I$Bk

DEMUX

L1 TCDM+T&SMB0 MBM

Shared L1 DataMem + Atomic Variables

DMA

Tightly Coupled DMA

Periph
+ExtM

N Cores 

Near-Threshold Multiprocessing

1.. 8 PE-per-cluster, 1…32 clusters

PE0 PEN-1
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<32-bit precision  SIMD2/4 opportunity
1. Dot product between SIMD vectors
2. Shuffle operations for vectors
3. Packed-SIMD ALU operations
4. Bit manipulations
5. Rounding and Normalizazion

Extending RISC-V for CNNs

Small Power and Area overhead  Energy reduction in NT >3x

RISC-V  V1

V2

V3

HW loops
Post modified Load/Store
Mac

SIMD 2/4 + DotProduct + Shuffling
Bit manipulation unit
Lightweight fixed point

V2

V3

Baseline RISC-V RV32IMCV1
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PULP-CNN ISA-Extensions
 The Dot-Product instruction:
 Hardware-loops eliminate loop 

overhead

Sum-of-dot-product 
units:

8b version

16b  version

1 cycle execution

 7 Sum-of-dot-product

 4 move

 1 shuffle

 3 lw/sw

 ~ 5 control instructions

20 instr. / output pixel
Scalar version >100 instr. / output pixel
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PULP-CNN ISA-Extensions

Convolution Performance on PULP with 4 cores

speedup: 3.9x

5x5 convolution in only 6.6 cycles/pixel

Energy gains: 4.2x
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The Memory Optimizazion Challenge

The canonical CNN 6-loop nest

. . . . .

L1MB0 MBM
DMA

PE0 PEN-1

Chip 
boundary 

L2MB0 MBN

L3

 Memory hierarchy optimization
 Sizing 
 Banking factors

 Data Movement engines 
 Shuffle instructions
 DMA, prefetchers

 Loop optimizations
 Reordeding
 Tiling
 Double-bufferng

L0
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Outline

 Near Threshold Multiprocessing
 Non-Von Neumann Accelerators
 Aggressive Approximation
 From Frame-based to Event-based Processing
 Outlook and Conclusion
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Computational Effort

18

 Computational effort
 10-class scene labeling on Stanford-BG 
 7.5 GOp/frame for 320x240 image (#Op=2 × #MAC)
 260 GOp/frame for FHD
 1050 GOp/frame for 4k UHD ~90% workload is Conv

Origami CNN ASIC
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Origami: A CNN Accelerator

 FP not needed: 12-bit signals sufficient
 Input to classification double-vs-12-bit accuracy loss (80.6% to 80.1%)

19
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CNNs: typical workload

Performance for 10 fps: ~73 GOPS/s

Energy efficiency: ~2300 GOPS/W efficiency

Origami core in 28nm FDSOI  10 fps ResNet-34 with ~32mW

Scaling Origami to 28nm FDSOI

Example: ResNet-34
 classifies 224x224 images into 1000 classes
 ~ trained human-level performance
 ~ 21M parameters
 ~ 3.6G MAC operations

0.4pj/OP
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Outline

 Near Threshold Multiprocessing
 Non-Von Neumann Accelerators
 Aggressive Approximation
 From Frame-based to Event-based Processing
 Outlook and Conclusion
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Pushing Further: YodaNN1

 Approximation at the algorithmic sideBinary weights
 BinaryConnect [Courbariaux, NIPS15], XOR NET [Rastegari, arXiv16]

 Reduce weights to a binary value -1/+1
 Stochastic Gradient Descent with Binarization in the Forward Path

 Learning large networks is still challenging, but starts to become feasible:
ResNet-18 on ImageNet with 83.0% (binary-weight) vs. 89.2% (single-
precision) top-5 accuracy; and 60.8% vs. 69.3% top-1 accuracy

 Ultra-optimized HW is possible!
 Major arithmetic density improvements:   MAC  2s compl. & Accum.

 Area can be used for more energy-efficient weight storage

 Storage reduction  SCM memories for lower voltage E goes with 1/V2

𝑤௕,௦௧௢௖௛ = ቊ
−1 𝑝ିଵ = 𝜎 𝑤        
1 𝑝ଵ = 1 − 𝑝ିଵ

𝑤௕,ௗ௘௧ = ቊ
−1 𝑤 < 0
1 𝑤 > 0

1After the Yedi Master from Star Wars - “Small in size 
but wise and powerful” cit. www.starwars.com
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SoP-Unit Optimization

Image Mapping (3x3, 5x5, 7x7)Equivalent for 7x7 SoP

ImageBank

FilterBank

1 MAC Op = 2 Op (1 Op for the “sign-reverse”, 1 Op for the add).
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YODANN Energy Efficiency
Same area 832 SoP units + all SCM

12x Boost in core energy efficiency (single layer)

0.03pj/OP
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Outline

 Near Threshold Multiprocessing
 Non-Von Neumann Accelerators
 Aggressive Approximation
 From Frame-based to Event-based Processing
 Outlook and Conclusion
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Back to System-Level

 Event-Driven Computation, which occurs 
only when relevant events are detected by 
the sensor

 Event-based sensor interface to minimize
IO energy (vs. Frame-based)

 Mixed-signal event triggering with an ULP 
imager, cochlea with internal processing 
AMS capability 

PULPv3

Imager,

Cochlea

Mixed-Signal
Event-based

Sensor

Digital
Parallel

Processor

A Neuromorphic Approach for doing nothing VERY well

Smart Visual Sensor idle most of the time (nothing interesting to see)
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GrainCam Imager

Pixel-level spatial-contrast extraction

Analog internal image processing 
 Contrast Extraction
 Motion Extraction, differencing two successive frames
 Background Subtraction with the reference image 

stored in pixel memory

[Gottardi, JSSC09]
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Graincam Readout
Readout modes:

 IDLE:  readout the counter of asserted pixels
 ACTIVE: sending out the addresses of asserted 

pixels (address-coded representation), 
according raster scan order

Event-based sensing: output frame data bandwidth 
depends on the external context-activity

Frame-
based

{x
0

, y
0

}

{x
1

, y
1

}

{x
2

, y
2

}

{x
3

, y
3

}

{x
N-1

, y
N-1

}

Event-
based

Ultra Low Power Consumption e.g. 10-20uW @10fps
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Even-driven CNNs? Yes!
Binary Neural Networks reduce precision of weights and post-activation neurons to 1-bit precision
while leading to a limited performance drop
Benefits:

Reduced storage costs by 32x
either for synaptic weights and 
temporary input/output data

Reduced computation complexity

1 0 0

0 1 1

0 1 0

Convolution reduce to:
C = popcount (NOT (weights XOR 

image))
Binarization:

output = C >0 ? 1 else 0

weight filter

PO

PN

PE

Performing spatial filtering and binarization on the sensor die through
mixed-signal sensing!  in-sensor first stage of the binary NN!!

Vre
s

V
Q

Adpating exposure

PO

PE

PN

Spatial
-
contra
st

Contrast
Block

P
NP
EP
O

QO

Q
NQ
E

Vt
h

P
O

Vre
s

to pixel 
PE

to pixel 
PN

VED
GE

V
Q

comp1

comp2

‘Moving’ pixel window

Gradient extraction Per-pixel circitut for filtering and binarization
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Event-Driven Binary Deep Network

Interger Input 
Layer

Outp
ut 
Layer

Binary
Input 
Layer

Output 
Layer

Binary Neural
Network (BNN)

Event-based
Binarized
Neural
Network 

Digital Signal ProcessingMixed-Signal Sensing

Integer data

binary data 
(events)Spatial-local

filtering and 
binarization

Digital pixel 
sampling

Layers with binary inputs and binary weights

Imager
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Training challenge

Training Event-based Binarized Neural Network:

[ISSUE] Absence of huge amount of data for training

Modelling the ‘’graincam filter’’ as a digital filter

𝑉஼~
୫ୟ୶( | ௣ಶି௣ೀ| , ௣ಿ ି௣೚ )

୫ୟ୶ (௣ಶ,௣ೀ,௣ಿ)
 Contrast

Value
Binary
Output

Vை = 𝑠𝑔𝑛(𝑉஼ − V୲୦)

Original RGB image Graincam imageSynthetic image

Evaluation on CIFAR-10 (10 classes, 
45k training, 5k valid, 10k testing)

Model VGG-like with 12 Convolutional laters and 3 
Fully Connected Layers

Baseline with RGB input 92%

BNN with RGB input 86%

Baseline with binary input 72%

BNN with binary input 68%

18% performance drop because of 
input representation but still

converges
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Results

TRAINING DATASETS ACCURACY
Model: VGG-like
architecture

KITTI dataset [1] – autonomous driving
system

MIO-TCD dataset [2] – surveillance system

[1] http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
[2] http://podoce.dinf.usherbrooke.ca/

Training:
60k samples

Validation:
900 samples

CONV3x3(#c,16) + POOLING

CONV3x3(16,32) + POOLING

CONV3x3(32,48) + POOLING

CONV3x3(48,64) + POOLING

CONV3x3(64,96) + POOLING

FULLY-CONNECTED (384,64)

FULLY-CONNECTED (64,3)

<20kB ‘’binary
weight program’’

BNN with RGB input BNN with binary input

84.6% 81.6%

Training converges with a 3%
performance drop
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BNN implementation on PULP

Basic Convolution Operation:

𝜌(𝑥, 𝑦) = ෍ 𝑤 𝑑, 𝑖, 𝑗 ∗ 𝐼(𝑑, 𝑖, 𝑗, 𝑥, 𝑦)

 

(ௗ,௜,௝)∈஼

𝑜௭(𝑥, 𝑦) =
𝜌(𝑥, 𝑦) + 𝑏 −  𝜇

𝜎
𝛾 + 𝛽 ≥ 0

𝜌 𝑥, 𝑦 =  𝒑𝒐𝒑𝒄𝒐𝒖𝒏𝒕{ 𝑵𝑶𝑻 (𝑤 𝑿𝑶𝑹 𝐼(𝑥, 𝑦)) }

Batch Normalization and binarization:

𝐼, 𝑤 ∈ {0,1}

bdot_3d
w(d,i,j)

d

(x,y)

I(d,x,y)

if 𝛾 ≥ 0 then 𝑜௭ 𝑥, 𝑦 = 𝜌 𝑥, 𝑦 ≤ 𝜇 − 𝑏 −
ఉ∗ఙ

ఊ
else 𝑜௭ 𝑥, 𝑦 = 𝜌 𝑥, 𝑦 ≥  𝜇 − 𝑏 −

ఉ∗ఙ

ఊ

C

𝜌 𝑥, 𝑦 ∈ 𝑁

just logic operation and integer comparison!

Major opportunity for HW acceleration!
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Preliminary Results

84.6%  vs. 81.6% Accuracy
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Outline

 Near Threshold Multiprocessing
 Non-Von Neumann Accelerators
 Aggressive Approximation
 From Frame-based to Event-based Processing
 Outlook and Conclusion
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Conclusions

 Near-sensor processing for the IoT
 CNNs can be taken into the ULP (mW power envelope) space

 Non-von-Neumann acceleration
 Very robust to low precision computations (deterministic and statistical)
 fJ/OP is in sight!

 Major synthesis challenges
 Memory optimizatiom: automatic exploration of Archi+Loop
 Automatic precision tuning of datapath
 Boolean training

 Open Source HW & SW approach innovation ecosystem
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Thanks!!!

www.pulp-platform.org
www-micrel.deis.unibo.it/pulp-project

iis-projects.ee.ethz.ch/index.php/PULP

Morale:
Plenty of room at the bottom
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Origami, YodaNN vs. Human

Type Analog 
(bio)

Q2.9
Precision

Q2.9
Precision

Binary-
Weight 

Network human ResNet-34 ResNet-18 ResNet-18

Top-1 error 
[%]

21.53 30.7 39.2

Top-5 error 
[%]

5.1 5.6 10.8 17.0

Hardware Brain Origami Origami YodaNN

Energy-eff. 
[uJ/img]

100.000(*) 1086 543 31

The «energy-efficient AI» challenge (e.g. Human vs. IBM Watson)

 Game over for humans also in energy-efficient vision?
 …. Not yet! (object recognition is a super-simple task)

*Pbrain = 10W, 10% of the brain used for vision, trained human working at 10img/sec
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CNN Workloads

Better networks are not necessarily more complex

[Culurciello16]
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Recovering silicon efficiency

1 > 1003 6

CPU GPGPU Fully
hardwired

GOPS/W 

Accelerator Gap

Non-Von Neumann

Throughput
Computing

General-purpose
Computing

Closing The Accelerator Efficiency Gap with Agile Customization

Area for same GOPS


