

Deep Learning with Low Precision Hardware Challenges and Opportunities for Logic Synthesis

Luca Benini ETHZ & UNIBO

First, it was machine vision...

Now it's everywhere!

ETH Eidgenössische Technische Hochschule Zürich

Deep neural networks (DNNs) Swiss Federal Institute of Technology Zurich

🕺 NVIDIA

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Key operation is dense M x V

GPUs are Great for Vanilla CNNs

Why?

Because they are good at matrix multiply \rightarrow 90% utilization is achievable (on lots of "cores")

Eidgenössische Technische Hochschule Zürich

ETH

HW for deep Networks: Frenzy

Datacenter → High-performance embedded → Mobile

ETH

Algorithmic Opportunities

DNNs Are Evolving Rapidly

Orders of magnitude compute effort an memory reduction with no loss in accuracy

Toward Micropower CNN HW

Outline

Near Threshold Multiprocessing

- Non-Von Neumann Accelerators
- Aggressive Approximation
- From Frame-based to Event-based Processing
- Outlook and Conclusion

Eldgenössische Technische Hochschuld Virin Bar-Threshold Multiprocessing

Extending RISC-V for CNNs

<32-bit precision \rightarrow SIMD2/4 opportunity

- 1. Dot product between SIMD vectors
- 2. Shuffle operations for vectors
- 3. Packed-SIMD ALU operations
- 4. Bit manipulations
- 5. Rounding and Normalizazion
 - V1 Baseline RISC-V RV32IMC HW loops
 - V2 Post modified Load/Store Mac
 - V3 SIMD 2/4 + DotProduct + Shuffling
 - Bit manipulation unit Lightweight fixed point

Small Power and Area overhead \rightarrow Energy reduction in NT >3x

PULP-CNN ISA-Extensions

PULP-CNN ISA-Extensions

Convolution Performance on PULP with 4 cores

5x5 convolution in only 6.6 cycles/pixel

Eidenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich The Memory Optimizazion Challenge

Outline

- Near Threshold Multiprocessing
- Non-Von Neumann Accelerators
- Aggressive Approximation
- From Frame-based to Event-based Processing
- Outlook and Conclusion

- Computational effort
 - 10-class scene labeling on Stanford-BG
 - 7.5 GOp/frame for 320x240 image (#Op=2 × #MAC)
 - 260 GOp/frame for FHD
 - 1050 GOp/frame for 4k UHD

~90% workload is Conv

Origami CNN ASIC

Origami: A CNN Accelerator

- FP not needed: 12-bit signals sufficient
- Input to classification double-vs-12-bit accuracy loss < 0.5% (80.6% to 80.1%)</p>

CNNs: typical workload

Example: ResNet-34

- classifies 224x224 images into 1000 classes
- ~ trained human-level performance
- ~ 21M parameters
- ~ 3.6G MAC operations

Scaling Origami to 28nm FDSOI

Performance for 10 fps: ~73 GOPS/s

Energy efficiency: ~2300 GOPS/W efficiency

0.4pj/OP

Origami core in 28nm FDSOI → 10 fps ResNet-34 with ~32mW

Outline

- Near Threshold Multiprocessing
- Non-Von Neumann Accelerators
- Aggressive Approximation
- From Frame-based to Event-based Processing
- Outlook and Conclusion

Pushing Further: YodaNN¹

- Approximation at the algorithmic side \rightarrow Binary weights
- BinaryConnect [Courbariaux, NIPS15], XOR NET [Rastegari, arXiv16]
 - Reduce weights to a binary value -1/+1
 - Stochastic Gradient Descent with Binarization in the Forward Path

$$w_{b,stoch} = \begin{cases} -1 & p_{-1} = \sigma(w) \\ 1 & p_1 = 1 - p_{-1} \end{cases} \qquad \qquad w_{b,det} = \begin{cases} -1 & w < 0 \\ 1 & w > 0 \end{cases}$$

- Learning large networks is still challenging, but starts to become feasible: ResNet-18 on ImageNet with 83.0% (binary-weight) vs. 89.2% (singleprecision) top-5 accuracy; and 60.8% vs. 69.3% top-1 accuracy
- Ultra-optimized HW is possible!
 - Major arithmetic density improvements: MAC → 2s compl. & Accum.
 - Area can be used for more energy-efficient weight storage
 - Storage reduction \rightarrow SCM memories for lower voltage \rightarrow E goes with $1/V^2$

¹After the Yedi Master from Star Wars - "Small in size but wise and powerful" cit. www.starwars.com

SoP-Unit Optimization

ImageBank

Equivalent for 7x7 SoP Image Mapping (3x3, 5x5, 7x7) 1 MAC Op = 2 Op (1 Op for the "sign-reverse", 1 Op for the add).

YODANN Energy Efficiency

Outline

- Near Threshold Multiprocessing
- Non-Von Neumann Accelerators
- Aggressive Approximation
- From Frame-based to Event-based Processing
- Outlook and Conclusion

Back to System-Level

Smart Visual Sensor→ idle most of the time (nothing interesting to see)

- Event-Driven Computation, which occurs only when relevant events are detected by the sensor
- Event-based sensor interface to minimize IO energy (vs. Frame-based)
- Mixed-signal event triggering with an ULP imager, cochlea with internal processing AMS capability

A Neuromorphic Approach for doing *nothing* VERY well

GrainCam Imager

Analog internal image processing

- Contrast Extraction
- Motion Extraction, differencing two successive frames
- Background Subtraction with the reference image stored in pixel memory

Graincam Readout

120

100

80

60

40

20

Active

Idle

Readout modes:

- IDLE: readout the counter of asserted pixels
- Power Consumption [uW] ACTIVE: sending out the addresses of asserted pixels (address-coded representation), according raster scan order

Event-based sensing: output frame data bandwidth depends on the external context-activity

Even-driven CNNs? Yes!

Binary Neural Networks reduce precision of weights and post-activation neurons to <u>1-bit precision</u> while leading to a limited performance drop

Performing spatial filtering and binarization on the sensor die through mixed-signal sensing! \rightarrow in-sensor first stage of the binary NN!!

Per-pixel circitut for filtering and binarization

Event-Driven Binary Deep Network

Training challenge

Training Event-based Binarized Neural Network:

[ISSUE] Absence of huge amount of data for training

Modelling the "graincam filter" as a digital filter

Contrast	Va	$\max(p_E - p_O , p_N - p_O)$	Binary	$V_{0} = san(V_{c} - V_{th})$
Value	VC	$\max(p_E, p_O, p_N)$	Output	

Evaluation on **CIFAR-10** (10 classes, 45k training, 5k valid, 10k testing)

Baseline with RGB input	92%	
BNN with RGB input	86%	
Baseline with binary input	72%	
BNN with binary input	68%	
Model VGG-like with 12 Convolutional laters and 3 Fully Connected Layers		
18% porformance drop be	couro of	

18% performance drop because of input representation but still converges

Original RGB image	Synthetic image	Graincam image
		-

Results

[2] http://podoce.dinf.usherbrooke.ca/

BNN implementation on PULP

if
$$\gamma \ge 0$$
 then $o_z(x,y) = \rho(x,y) \le \left[\mu - b - \frac{\beta * \sigma}{\gamma}\right]$ else $o_z(x,y) = \rho(x,y) \ge \left[\mu - b - \frac{\beta * \sigma}{\gamma}\right]$

just logic operation and integer comparison!

Major opportunity for HW acceleration!

Preliminary Results

Scenario	BNN with RGB input	Event-based BNN
Image Sensor Power Consumption	1.1mW @30fps	$100\mu W @ 50 fps$
Image Size	632446 bits	8192 bits
Image Sensor Energy for frame capture	66.7 μJ	$2 \mu J$
Transfer Time (4bit SPI @50MHz)	3.1 msec	0.04 msec
Transfer Energy (8.9mW @0.7V)	$28 \mu J$	$2 \mu J$
BNN Execution Time (168MHz)	81.3 msec	75.3 msec
BNN Energy consumption (8.9mW @0.7V)	$725 \ \mu J$	671 μJ
Total System Energy for Classification	$820 \ \mu J$	674 μJ

Statistics per frame	Frame-Based	Event-based
Idle (no motion)		
Sensor Power	1.1mW	$20\mu W$
Avg Sensor Data	19764 Bytes	-
Transfer Time	790µsec	-
Processing Time	3.02 msec	-
Avg Processor Power	1.45mW	0.3mW (sleep)
Detection		
Sensor Power	1.1mW	$60 \mu W$
Avg Sensor Data	19764 Bytes	\sim 536 Bytes
Transfer Time	790μ sec	21.4μ sec
Processing Time	3.47 msec	187.6µsec
Avg Processor Power	1.57mW	0.511mW
Classification		-
Sensor Power	2mW	$60\mu W$
Avg Sensor Data	79056 Bytes	1024 Bytes
Transfer Time	3.16 msec	41μ sec
Processing Time	81.3 msec	75.3 msec
Processor Energy	760 μ J	677 μJ

84.6% vs. 81.6% Accuracy

Outline

- Near Threshold Multiprocessing
- Non-Von Neumann Accelerators
- Aggressive Approximation
- From Frame-based to Event-based Processing
- Outlook and Conclusion

Conclusions

- Near-sensor processing for the IoT
- CNNs can be taken into the ULP (mW power envelope) space
 - Non-von-Neumann acceleration
 - Very robust to low precision computations (deterministic and statistical)
 - fJ/OP is in sight!
- Major synthesis challenges
 - Memory optimizatiom: automatic exploration of Archi+Loop
 - Automatic precision tuning of datapath
 - Boolean training
- Open Source HW & SW approach \rightarrow innovation ecosystem

Morale: Plenty of room at the bottom

Thanks!!!

www.pulp-platform.org www-micrel.deis.unibo.it/pulp-project iis-projects.ee.ethz.ch/index.php/PULP

Origami, YodaNN vs. Human

The «energy-efficient AI» challenge (e.g. Human vs. IBM Watson)

	Туре	Analog (bio)	Q2.9 Precision	Q2.9 Precision	Binary- Weight
	Network	human	ResNet-34	ResNet-18	ResNet-18
	Top-1 error [%]		21.53	30.7	39.2
	Top-5 error [%]	5.1	5.6	10.8	17.0
	Hardware	Brain	Origami	Origami	YodaNN
	Energy-eff. [uJ/img]	100.000(*)	1086	543	31

 $^{*}P_{brain}$ = 10W, 10% of the brain used for vision, trained human working at 10img/sec

- Game over for humans also in energy-efficient vision?
- Not yet! (object recognition is a super-simple task)

CNN Workloads

Better networks are not necessarily more complex

Swiss Federal Institute of Technology Zurich

Recovering silicon efficiency

Closing The Accelerator Efficiency Gap with Agile Customization